Les Complexes

Programme du chapitre

Dans cette brève étude,	on insistera sur	l'intervention de	es nombres	complexes e	n analyse	(résolution	d'équations	différentielles)	et sur leur	utilisation	en électricit	é et er
électronique.												

• a) Sommes a + bi telles que $i^2 = -1$: égalité, somme, produit, conjugué, inverse.

Représentation géométrique.

Lignes de niveau des fonctions $z\mapsto \mathfrak{Re}(z)$ et $z\mapsto \mathfrak{Im}(z)$.

• b) Module d'un nombre complexe; argument d'un nombre complexe non nul. Notation $e^{i\theta}$; forme trigonométrique $z=re^{i\theta}$, où r> 0. Lignes de niveau des fonctions $z\mapsto |z-a|$ et $z\mapsto Arg(z-a)$. Passage de la forme algébrique à la forme trigonométrique et inversement. Relation $e^{i\theta}e^{i\theta'}=e^{i(\theta+\theta')}$; lien avec les formules d'addition.

• c) Formule de Moivre. Formules d'Euler.

Travaux pratiques

1° Exemples de mise en œuvre des formules de Moivre et d'Euler : linéarisation de polynômes trigonométriques

 2° Résolution des équations du second degré à coefficients réels.

La construction de C n'est pas au programme.

Les étudiants doivent connaître la notation x+jy, utilisée en électricité. Aucune connaissance sur les applications des nombres complexes à la géométrie n'est exigible dans le cadre du programme de mathématiques. Le repérage polaire $\rho e^{i\theta}$, où ρ est de signe quelconque, est hors programme.

Cette activité est à mener en liaison avec l'enseignement des sciences physiques; toute virtuosité en ce domaine est exclue; aucune connaissance à ce sujet n'est exigible dans le cadre du programme de mathématiques et toutes les indications utiles doivent

La résolution d'équations à coefficients complexes et l'étude des racines nièmes d'un nombre complexe sont hors programme.

Auto-évaluation

Activité 1

- Je sais manipuler des relations algébriques (developper, réduire, ...) Réaliser : □□□□
- Je sais identifier une equation et son degré Approprier : □□□□
- Je sais comprendre des textes mathématiques Approprier : □□□□
- Je m'exprime correctement en utilisant le vocabulaire approprié Communiquer : □□□□
- Je sais résoudre une équation du second degré Raisonner : □□□□

Activité 2

- Je sais faire des calculs simples avec des nombres complexes Réaliser : □□□□
- Je maitrise la représentation géométrique d'un nombre complexe Approprier : □□□□
- J'ai su faire le lien par ecrit entre les complexes et la géométrie Communiquer : □□□□
- J'ai trouver la stratégie permettant de déterminer la valeur de la constante i Raisonner : □□□□

Activité 3

- Je maitrise les différentes formes d'écriture des complexes Réaliser : □□□□
- Je sais identifier un complexe et son conjugué Approprier : □□□□
- J'ai su déterminer correctement la forme trigonométrique d'un complexe Raisonner : □□□□
- J'ai su trouver les lignes de niveau correspondant aux représentations graphiques Raisonner : □□□□
- J'ai su exprimer l'importance des complexes par écrit et par oral i Communiquer : □□□□

Activité 4

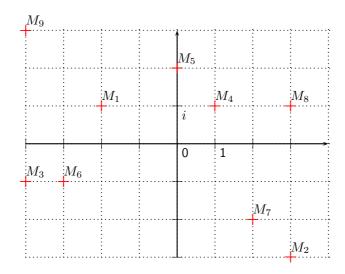
- Je reconnais les différentes formes d'écriture des complexes Approprier : □□□□
- J'ai su déterminer correctement les formules de Moivre et d'Euler Raisonner : □□□□
- J'ai su reéaliser les calculs permettant de linéariser un polynôme Réaliser : □□□□
- J'ai su m'exprimer par écrit sur l'identité d'Euler Communiquer : □□□□

Exercices

Tous les exercices sont à faire à la fin des activités indiquées pour le cours suivant. Pour chaque exercice proposé, vous devez préciser à chaque étape de sa résolution le théorème ou la propriété que vous utilisez en rapport avec les théorèmes ou propriétés nouvelles vus dans le chapitre.

Exemple : Déterminer le nombre de racines que possède cette équation $5x^4 - 3x^2 + x^7 = 0$.

Solution : L'équation est de degré 7 car sa plus haute puissance vaut 7. D'après le théorème 1, elle possède 7 racines réelles ou imaginaires.


Exercice 1. Activité 1

Donner les racines des équations suivantes :

- $4x^2 3x + 7 = 0$
- $2x x^2 = 12$

Exercice 2. Activité 2

Déterminer les affixes de chaque point.

Exercice 3. Activité 2

À partir des affixes des points précédents calculer puis positionner dans le plan les images des nombres complexes obtenus

- $z_{10} = z_6 + z_7$
- $z_{11} = z_1 \cdot z_4$
- $z_{12} = \frac{1}{2}(z_5^2 z_6^2)$

Exercice 4. Activité 3

Déterminer le module et l'argument des points M_1 à M_5 et donner leur forme trigonométrique correspondante $z = r(\cos \theta + i \sin \theta)$. Vous veillerez à vérifier visuellement par rapport au plan complexe la valeur des arguments obtenus.

Exercice 5. Activité 3

En utilisant le tableau ci-dessous donner les modules et argument des nombres complexes $z_1 = \sqrt{3} - i$ et $z_2 = \sqrt{3} + 3i$

	sin	cos	tan
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	∞

Exercice 6. Activité 3

Donner la notation exponentielle des nombres complexes $z_1 = \sqrt{3} - i$ et $z_2 = \sqrt{3} + 3i$

Exercice 7. Activité 4

En utilisant la formule d'Euler déterminer l'expression correcte de $2\sin^3\theta + 5\cos^3\theta$

Cours

I. Les équations du second degré

1. Rappel

Les équations du second degré vues au lycée : $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac \mid \text{Si } \Delta > 0 \text{ alors } x_1 = \frac{-b - \sqrt{\Delta}}{2a} \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_1 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_1 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_1 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_2 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une racine double } x_3 = \frac{-b}{2a} \mid \text{Si } \Delta = 0 \text{ alors une ra$$

Si $\Delta < 0$ alors il n'y a pas de racines réelles

2. Avec les nombres imaginaires

Théorème 1

Théorème de d'Alembert Gauss

Une équation de degré m a toujours m racines réelles ou imaginaires

On constate que $\sqrt{-25}$ est un nombre imaginaire et on le note en mathématiques $i\sqrt{25}$ ou encore 5i. En physique et plus particulièrement en électricité où les nombres imaginaires sont très utilisés, on préfère utiliser 5j pour ne pas confondre avec le i de l'intensité.

Définition 1

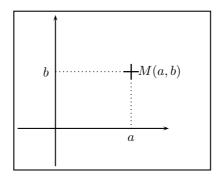
Soit b un nombre réel alors ib désigne un nombre imaginaire.

$$i=\sqrt{-1}$$
 et donc $i^2=-1$

Définition 2

Le nombre i désignant les nombres imaginaires vérifie $i^2=-1$

Résolution d'une équation du second degré du type $ax^2 + bx + c = 0$ avec $\Delta = b^2 - 4ac$


Si
$$\Delta>0$$
 alors $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$
Si $\Delta=0$ alors il y a une racine double $x_1=\frac{-b}{2a}$
Si $\Delta<0$ alors $x_1=\frac{-b-i\sqrt{-\Delta}}{2a}$ et $x_2=\frac{-b+i\sqrt{-\Delta}}{2a}$

Il L'ensemble des complexes

1 Définitions

Définition 3-4

On a vu qu'il existait des nombres constitués d'une partie réelle a et d'une partie imaginaire b et que l'on note z=a+ib ce nombre est appelé un **nombre complexe** que l'on peut représenter dans le plan complexe par son **image** le point M d'abscisse a et d'ordonnée b

Définition 5

On dit aussi que l'**affixe** du point M(a,b) est le nombre complexe z=a+ib.

Définition 6

a est la **partie réelle** de z que l'on note $a=\mathfrak{Re}(z)$ tandis que b est sa **partie imaginaire** que l'on note $b=\mathfrak{Im}(z)$.

Définition 7

a+ib est la **forme algébrique** du nombre complexe z

2 lignes de niveau

Définition 8

Dans le plan complexe, la **ligne de niveau** k d'une fonction f est l'ensemble des points d'affixe z tels que f(z)=k.

- La ligne de niveau k de la fonction $z \longmapsto \mathfrak{Re}(z)$ est l'ensemble des points M du plan d'affixe z dont la partie réelle est k, c'est à dire la droite d'équation x = k.
- La ligne de niveau k de la fonction $z \mapsto \mathfrak{Im}(z)$ est l'ensemble des points M du plan d'affixe z dont la partie imaginaire est k, c'est à dire la droite d'équation y = k.

3 Opérations sur les complexes

Propriété 1

Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire :

$$z = z' \Leftrightarrow a + ib = a' + ib' \Leftrightarrow a = a' \text{ et } b = b'.$$

Propriété 2

On pose z=a+ib, $z^{\prime}=a^{\prime}+ib^{\prime}$ et k un réel, on a :

$$ightharpoonup z + z' = (a + a') + i(b + b'),$$

$$ightharpoonup z - z' = (a - a') + i(b - b'),$$

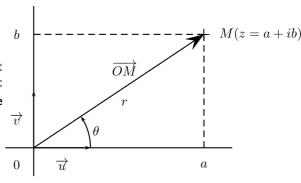
$$\blacktriangleright kz = ka + ikb$$
,

$$zz' = (aa' - bb') + i(ab' + a'b).$$

Démonstration de la dernière propriété :

$$zz' = (a+ib)(a'+ib')$$

$$= aa' + iab' + ia'b + i^2bb'$$


$$= aa' + iab' + ia'b - bb'$$

$$= (aa' - bb') + i(ab' + a'b).$$

III Complexes et géométrie

1 Représentation géométrique

Définissons un repère orthonormé direct $(O;\overrightarrow{u};\overrightarrow{v})$ et plaçons le point M d'affixe z=a+ib et donc de coordonnées M(a;b). On peut donc définir **un vecteur** \overrightarrow{OM} et lui associer **un nombre complexe unique** z=a+ib.

Définition 9

On dit aussi que l'**affixe** du vecteur $\overrightarrow{OM} \begin{pmatrix} a \\ b \end{pmatrix}$ est le nombre complexe z = a + ib.

De même qu'au vecteur \overrightarrow{OM} , on peut associer une norme $||\overrightarrow{OM}|| = \sqrt{a^2 + b^2}$ au nombre complexe z on peut y associer un module.

Définition 10

Le **module** r du complexe z est le réel positif noté |z| tel que $|z|=\sqrt{a^2+b^2}$

Pour positionner le point M géométriquement dans le plan on doit utiliser deux coordonnées qui peuvent être les coordonnées cartésiennes a et b ou deux coordonnées qui peuvent être |z| et θ et qui sont des coordonnées polaires. On nommera forme trigonométrique l'écriture du nombre complexe utilisant r et θ .

Définition 11

On appelle **argument** de z tout nombre réel θ tel que $\theta = \arg(z) = (\overrightarrow{u}, \overrightarrow{OM})[\ 2\pi]$

[2 Complexe conjugué]

Définition 12

On appelle **conjugué** du nombre complexe z=a+ib le nombre $\overline{z}=a-ib$.

Propriété 3

Soit z et z' deux nombres complexes, alors :

$$ightharpoonup \overline{z+z'} = \overline{z} + \overline{z'}.$$

$$ightharpoonup \overline{z \times z'} = \overline{z} \times \overline{z'}.$$

$$\blacktriangleright \overline{\overline{z}} = z.$$

$$ightharpoonup z \in \mathbb{R} \iff z = \overline{z}.$$

$$ightharpoonup z \in i\mathbb{R} \Longleftrightarrow z = -\overline{z}.$$

$$ightharpoonup \Re \mathfrak{e}(z) = \frac{1}{2}(z + \overline{z}).$$

$$ightharpoonup \Im \mathfrak{m}(z) = \frac{1}{2i}(z - \overline{z}).$$

3 Notation exponentielle

Si on utilise le développement en série de Mac Laurin de la forme trigonométrique, on se rend compte que l'on peut écrire un nombre complexe sous une troisième forme

Définition 12

Soit z=a+ib un nombre complexe non nul de module r=|z| et dont un argument est $\theta=arg(z)$. On note ce nombre z sous la forme $z=r\,e^{i\theta}$.

Cette écriture est appelée notation exponentielle de z.

IV Formules de Moivre et d'Euler

1 Formule de Moivre

Théorème 2

Théorème de Moivre

Pour tout entier relatif n et tout nombre complexe z non nul, $|z^n| = |z|^n$ et $arg(z^n) = n \cdot arg(z)[2\pi]$

On peut aussi retenir que

Propriété 4

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

2 Formule d'Euler

Théorème 3

Théorème d'Euler

Pour tout nombre réel θ on a $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

3 Linéarisation de polynômes trigonométriques

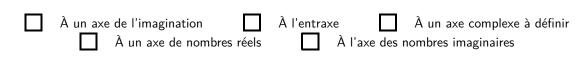
Définition 13

Linéariser un polynôme trigonométrique revient à trouver des expressions trigonométriques du premier degré

Propriété 5

Pour tout nombre réel θ on a $\cos^2 \theta + \sin^2 \theta = 1$

Complexes — codez votre numéro d	'étudiant ci-contre, et écrivez	votre nom et préno	Activité 1
0 0 0 Nom et prénom :	etadant er contre, et cenvez	votre nom et preme	m er dessous.
		Questions	Scores à reporter ici
Réaliser		• 1,6	/
4	gramme de mathématiques	2 ,3,4,5,8	,
5 5 5 Employer des sources d'informations			/
Raisonner Trouver une stratégie adaptée à un pr	ohlème		
Mettre en oeuvre une stratégie :		7 ,9	,
7 7 Argumenter	ir-faire figurant au programme de mathématiques		, ,
Analyser la pertinence d'un résultat			
Communiquer		7 ,10	,
9 9 9 par écrit par oral		• 7,10	/
		Total	
		Total	,
Activité			
François Viète (1540 - 1603)			
et racines. Il remarque aussi qu'il est toujours possib Peter Roth prétend que le nombre de racines d'une é Albert Girard (1595 - 1632)	-	•	n racines données. En 1608
Un premier énoncé correct du théorème fondame intitulé Inventions nouvelles en l'algèbre, annonce que « Toutes les équations d'algèbre reçoivent autant Question 1 Réaliser Développer puis réduire l'éq	e : de solutions que la dénominat	ion de la plus haut	e quantité le démontre. »
	$x^3 - 4x^2 + 17x + 60 = 0$		$x^2 - 17x + 60 = 0$
Question 2 Approprier Indiquer le degré de cette	équation et justifier votre cho	ix par une phrase	
□ 1	□ 2 □ 3	4	
Outside 3			
Question 3 Approprier Donner les racines de cet	•	•	
[{3,4,5} [{3,4,5}	-4,5} Pas de racin	nes	3,4,-5}
Question 4 Approprier En vous aidant du texte in $15x = 56$	ndiquer le nombre de racines qu	l'admet l'équation :	$: -4x^5 + 3x^4 - 12x^3 + 2x^2 -$
Pas de racines 1	2 3	4	5

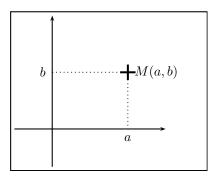

Question 5	Approprier C	Combien de racines	comporte généra	alement une é	équation du	second (degré	
		Pas de racines	1	2		3	4	
			CC	URS				
L Los águs	ations du soc	and dográ						
	ations du seco	ond degre						
1. Rappel		1	2 + 1 +	0				
		degré vues au lycée						
$\Delta = b^2$	$-4ac$ Si Δ	$\Delta > 0 \text{ alors } x_1 = \frac{-1}{2}$	$\frac{b-\sqrt{\Delta}}{2a}$ et $x_2 =$	$=\frac{-b+\sqrt{\Delta}}{2a} \mid$	Si $\Delta = 0$ a	alors un	e racine doub	$le x_1 = \frac{-b}{2a}$
		Si Δ <	< 0 alors il n'y	a pas de raci	nes réelles			
Question 6	Réaliser Con	nbien de racines cor	mporte l'équatio	$-x^2 + 10x$	-40 = 0			
	☐ F	Pas de racine réelle	1		2	3	4	
Girolamo Ca	ardano (15	i01 - 1576)						
des premiers mat résolution de l'éq dont il donne que l'on peut et fait observ	thématiciens à quation $x(10-1)$ e les solutions $\frac{1}{2}$ e lire comme $\frac{1}{2}$ er que le productions $\frac{1}{2}$ er que le production $\frac{1}{2}$ er que le produ	Int nés de confrontation en imaginer l'existen en imaginer l'existen en $(x)=40$ sous la forme suivant en $(x)=40$ et $(x)=40$	e : 5. p. P_x . m. $1 \over 15$	1545 dans so 1545 et 156 et 156 m. 156 156 tout en recon	on Artis mag m. 15 nnaissant que	nae sive	regulis algebrai on est, en toute	cus à l'occasion de l
René Desca	rtes (1596	- 1650)						
imaginaires c'est- qui corresponde à	-à-dire que l'or à celle qu'on in	escartes utilise pour l n peut toujours en ima nagine ». Albert Gin une démonstration.	aginer autant que	j'ai dit en cha	que équatior	n, mais qu	u'il n'y a quelqu	iefois aucune quantit
Raphaël Bo	mbelli (15	26-1572)						
appelle piu et me piu di meno et mainsi la notation Ainsi, par exemp piu di meno fa m l'équation du tro Question 7 &	eno, il invente neno di meno. troublante qui le, meno via n eno (+i par + isième degré <i>x</i> Raisonner	ans son Algebra est le deux autres signes, so Ainsi l'expression que e serait $\sqrt{-121}$. Il déneno fà piu (- par - di donne -). Il qualifie $^3=15x+4$ Communiquer L'écorécédents expliquent	ortes d'opérateurs e l'on note aujour éfinit alors une rè lonne $+$), piu di n les quantités qu'il quation $x(10-x)$	s qui symbolise d'hui $2+i\sqrt{12}$ gle des signes meno via meno manipule de x	ent l'ajout ou $\overline{21}$ est notée sur le produ $\overline{0}$ fà meno di plus sophistic	I le retrai par Bom IIt de deu meno (H quées que	it d'une racine abelli 2 piu di mux quelconques $+$ i par - donne e réelles mais le $-x^2+10x-1$	d'un nombre négatif neno R.q. 121. Il évit de ces quatre signes -i) et piu di meno vis s utilise pour résoudre 40=0 précédemen
		Ne pas cocher –	\longrightarrow					
Question 8	Annroprier F	n utilisant les textes	historianes anel	le est la notat	ion actualla	des solu	itions de l'éaux	ation $r(10-x)=4$

			CC	URS				
2. Avec	les nombres i	imaginaires						
Théor	ème 1]
		e de d'Alembert G tion de degré m a to		es réelles ou i	maginaires			
et plus pa	articulièreme e avec le i de	25 est un nombre im nt en électricité où le l'intensité.						
	Soit b un	nombre réel alors ib	désigne un nor	nbre imagina	ire.			
$i = \sqrt{-1}$	et donc i^2 =	= -1						J
Défini	tion 2]
	Le nombre	e i désignant les non	nbres imaginair	es vérifie i^2 =	= -1			
Résolutio	n d'une équa	ation du second degr	\dot{r} é du type ax^2	+bx+c=0	avec $\Delta = b^2$	2-4ac		1
		Si $\Delta>0$ alors x_1	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\frac{-b}{at x_2 - \frac{-b}{at}}$	$\sqrt{\Delta}$			
		Si $\Delta=0$ alors il y	/ a une racine d	louble $x_1 = \frac{1}{2}$	<u> </u>			
		Si $\Delta < 0$ alors x_1	$=\frac{-b-i\sqrt{-\Delta}}{2a}$	$\frac{1}{2}$ et $x_2 = \frac{-b}{2}$	$\frac{0 + i\sqrt{-\Delta}}{2a}$			
on $5x^2 +$	4x + 3 = 0	utilisant votre calcute $4x + 3x$) XCas :csc			de calcul forr	mel ou manu	ellement ci d	dessous, r
S={-		$\frac{-2+i\sqrt{11}}{5}$ } $S = \{\frac{-2-\sqrt{-11}}{5}; \frac{-2}{5}\}$						$; \frac{-2+\sqrt{3}}{5}$
on 10		uer Conclure sur l'uti	0		0	0		ésolution

	codez votre numéro d'étudiant ci-contre, et écrivez	votre nom et prénom ci-dessous.	Activité 2
	om et prénom :		
□ 2 □ 2 □ 2 □			
□ 3 □ 3 □ 3		Questions Scores à reporter ici	
Réali Maîtr	iser iser les connaissances figurant au programme de mathématiques	• 8	/
Appr	roprier	1 ,3,6	/
1 1 3 1 1 3 1 1 3	oyer des sources d'informations <mark>onner</mark>		
	<mark>Frouver u</mark> ne stratégie adaptée à un problème		
	Mettre en oeuvre une stratégie : Utiliser de façon approprié des savoir-faire figurant au programme de mathématiques	4 ,5	/
	Argumenter Analyser la pertinence d'un résultat		
□ 8 □ 8 □ 8 □ Com	muniquer		
	ar écrit ar oral	• 2,7	/
	31 Of all	Total	
		Total	/
	La qualité de la rédaction et la précision des raisonnements influ		
Les questions faisant apparaît	tre le symbole \Lambda peuvent présenter zéro, une ou plusieurs bonnes re	éponses. Les autres ont une unique bonne	réponse.
Question 1 Approprier Rep	orésenter les nombres réels par un axe horizontal gra	dué. Placer les valeurs 0 ;5 ;10 ;-5	5 ;-10
À quelle transformation géomét	trique peut-on associer la transformation d'un nomb	re réel en son opposé.	
	_		
À une rotation de c	entre l'origine 0 et d'angle -90°	otation de centre l'origine 0 et d	l'angle 90°
À une rotation de ce	entre l'origine 0 et d'angle 360° 🔲 🛚 À une re	otation de centre l'origine 0 et d	'angle 180°
_	_		
Question 2 Communiquer	Faire une phrase indiquant à quoi correspond géom	étriquement la multiplication d'	un nombre réel
par -1.			
	Ne pas cocher \longrightarrow		
	nte pas cocher /	Ш	
	xe représenté précédement est l'axe des nombres ré e définir un plan. Choisir quelle transformation géom rertical.		
 			
		otation de centre l'origine 0 et d	-
À une rotation de ce	entre l'origine 0 et d'angle 90° 📗 À une ro	tation de centre l'origine 0 et d'	angle 180°
	l'on associe comme précédement la rotation choisie		
	n géométrique permet de trouver la valeur de i		
	Ne pas cocher \longrightarrow		

Raisonner Indiquer à quoi correspond alors cet axe vertical.

Question 5


COURS

Il L'ensemble des complexes

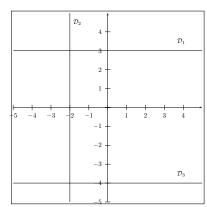
1 Définitions

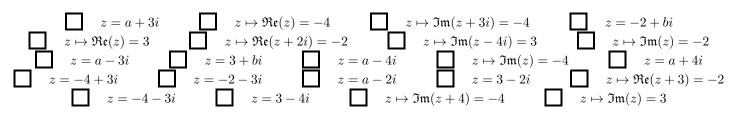
Définition 3-4

On a vu qu'il existait des nombres constitués d'une partie réelle a et d'une partie imaginaire b et que l'on note z=a+ib ce nombre est appelé un **nombre complexe** que l'on peut représenter dans le plan complexe par son **image** le point M d'abscisse a et d'ordonnée b

Définition 5

On dit aussi que l'**affixe** du point M(a,b) est le nombre complexe z=a+ib.


Définition 6


a est la **partie réelle** de z que l'on note $a=\mathfrak{Re}(z)$ tandis que b est sa **partie imaginaire** que l'on note $b=\mathfrak{Im}(z)$.

Définition 7

a+ib est la **forme algébrique** du nombre complexe z

Question 6 Approprier À partir du plan complexe représenté ci-dessous et des droites $\mathcal{D}_1, \mathcal{D}_2$ et \mathcal{D}_3 . Déterminer les fonctions et affixes dont les images appartiennent à ces droites.

stion 7	Communiquer Conclure sur l'utilité des nombres imaginaires en géométrie plane
	Ne pas cocher \longrightarrow
	COURS
lignes de	niveau
Définiti	on 8
	Dans le plan complexe, la ligne de niveau k d'une fonction f est l'ensemble des points d'affixe z tels
	que $f(z)=k$.
	• La ligne de niveau k de la fonction $z \longmapsto \mathfrak{Re}(z)$ est l'ensemble des points M du plan d'affixe z dont la partie réelle est k , c'est à dire la droite d'équation $x=k$.
	- La ligne de niveau k de la fonction $z \longmapsto \mathfrak{Im}(z)$ est l'ensemble des points M du plan d'affixe z dont
	la partie imaginaire est k , c'est à dire la droite d'équation $y=k$.
Opératio	ns sur les complexes
Proprié	
7 700776	Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie
	imaginaire :
	$z=z' \Leftrightarrow a+ib=a'+ib' \Leftrightarrow a=a' \text{ et } b=b'.$
Proprié	té 2
	On pose $z=a+ib,\ z'=a'+ib'$ et k un réel, on a :
	The pose $z = a + ib$, $z = a + ib$ et k this reel, on a . > z + z' = (a + a') + i(b + b'),
	ightharpoonup z - z' = (a - a') + i(b - b'),
	ightharpoonup kz = ka + ikb,
	ightharpoonup zz' = (aa' - bb') + i(ab' + a'b).
	ion de la dernière propriété :
	$+ib)(a'+ib')$ $b'+iab'+ia'b+i^2bb'$
	a'+iab'+ia'b-bb'
= (aa	(a'-bb')+i(ab'+a'b).
_	
estion 8	Réaliser Soient $z_1 = 4 - 2i$ et $z_2 = -3 + i$ Calculer et verifier

மையை N'OUBLIEZ PAS DE COMPLÉTER L'AUTOÉVALUATION மையமை

	votre nom et pré	Activité 3 nom ci-dessous.
Nom et prénom :		
	Questions	Scores à reporter ici
Réaliser Maîtriser les connaissances figurant au programme de mathématiques	• 7,9	/
Approprier	• 5,6	/
Employer des sources d'informations		/
	2 ,3,4,8	,
 Utiliser de façon approprié des savoir-faire figurant au programme de mathématiques 		/
Analyser la pertinence d'un résultat		
Communiquer		
par écrit	1 ,10	/
• par oral		
	Total	/
ué que les nombres complexes avaient un rôle très impor et les systèmes électriques fonctionnent en alternatif sir composants de bases agissent sur l'électricité en la dériva gration ou la dérivation d'un signal électrique de forme s une certaine manière que la nature n'agit pas sur la forme donc été choisie à l'image de la lumière de forme sinusoïd éorie ondulatoire de la lumière a associé aux ondes de lumi géométrie vectorielle a donc été créée pour permettre de res de mêmes fréquences. Cette géométrie vectorielle a ér e des calculs plus aisés sur les grandeurs électriques usuel	rtant dans l'écritu nusoïdal pour une int (dans son sens sinusoïdale donne d'un signal élect dale. Augustin FR ère des vecteurs o réaliser aisément té ensuite exploit les. L'utilisation o	e raison majeure. Les systèmes s' mathématique) ou à l'inverse e un signal électrique de même rique s'il a la forme d'une onde RESNEL (1788-1827) Physicien qui portent désormais son nom : des opérations mathématiques ée par les électrotechniciens et des complexes s'imposait alors.
cocher —→ □ _ □ □ □	······································	
	Nom et prénom : Matriser les connaissances figurant au programme de mathématiques	Réaliser les connaissances figurant au programme de mathématiques Progression Pro

Aucune de ces réponses n'est correcte.

COURS

III Complexes et géométrie

1 Représentation géométrique

Définissons un repère orthonormé direct $(O; \overrightarrow{u}; \overrightarrow{v})$ et plaçons le point M d'affixe z=a+ib et donc de coordonnées M(a;b). On peut donc définir un vecteur \overrightarrow{OM} et lui associer un nombre complexe unique z = a + ib.

Définition 9

On dit aussi que l'**affixe** du vecteur $\overrightarrow{OM} \begin{pmatrix} a \\ b \end{pmatrix}$ est le nombre complexe z = a + ib.

De même qu'au vecteur \overrightarrow{OM} , on peut associer une norme $||\overrightarrow{OM}|| = \sqrt{a^2 + b^2}$ au nombre complexe z on peut y associer un

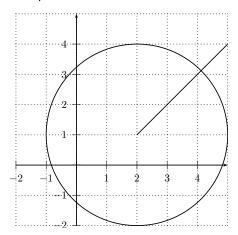
Définition 10

Le **module** r du complexe z est le réel positif noté |z| tel que $|z| = \sqrt{a^2 + b^2}$

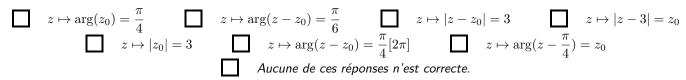
Pour positionner le point M géométriquement dans le plan on doit utiliser deux coordonnées qui peuvent être les coordonnées cartésiennes a et b ou deux coordonnées qui peuvent être |z| et θ et qui sont des coordonnées polaires. On nommera forme trigonométrique l'écriture du nombre complexe utilisant r et θ .

Définition 11

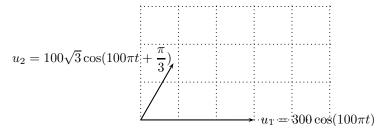
On appelle **argument** de z tout nombre réel θ tel que $\theta = \arg(z) = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$


Raisonner À partir de la représentation graphique du cours et de vos connaissances de trigonométrie ou des relations dans le triangle indiquer les relations correctes.

Question 3 Raisonner En déduire l'écriture polaire correcte d'un nombre complexe


Question 4 & Raisonner Indiquer les expressions correctes permettant d'obtenir les valeurs algébriques à partir des valeurs trigonométriques

Question 5 \clubsuit Approprier Si on pose $z=a+ib$ et $\overline{z}=a-ib$ quelle sont les égalités correctes
COURS
2 Complexe conjugué
Définition 12
On appelle conjugué du nombre complexe $z=a+ib$ le nombre $\overline{z}=a-ib$.
Propriété 3
Soit $z = z' = z'$ deux nombres complexes, alors :
$ \overline{z+z'} = \overline{z} + \overline{z'}. $ $ \overline{z \times z'} = \overline{z} \times \overline{z'}. $
$ ightharpoonup \overline{\overline{z}} = z.$
$\blacktriangleright \mathfrak{Re}(z) = \frac{1}{2}(z + \overline{z}).$
$\blacktriangleright \mathfrak{Im}(z) = \frac{1}{2i}(z - \overline{z}).$
$2i^{(z)}=2i^{(z-z)}$
3 Notation exponentielle Si on utilise le développement en série de Mac Laurin de la forme trigonométrique, on se rend compte que l'on peut écrire u nombre complexe sous une troisième forme **Définition 12**
Soit $z=a+ib$ un nombre complexe non nul de module $r= z $ et dont un argument est $\theta=arg(z)$. On note ce nombre z sous la forme $z=re^{i\theta}$. Cette écriture est appelée notation exponentielle de z .
Question 6 Approprier Donner l'expression correcte du conjugué de la forme exponentielle
Question 7 \clubsuit Réaliser Donner les formes algébriques correspondantes aux formes complexes suivantes : $z_1=2e^{i\frac{\pi}{6}}$ $z_2=3e^{i\frac{\pi}{6}}$ On rappelle :
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Question 8 \clubsuit Raisonner Lors de l'activité précédente, on a vu les lignes de niveau. Afin d'utiliser le plan complexe, on cherche à définir à quoi peuvent correspondre des figures simples comme la demi-droite et le cercle. À partir du point M_0 d'affixe $z_0=2+i$

Déterminer les fonctions correspondant à ces deux figures.

Question 9 \clubsuit Réaliser Soient les tensions alternatives sionusoïdales $u_1 = 300\cos(100\pi t)$ et $u_2 = 100\sqrt{3}\cos(100\pi t + \frac{\pi}{3})$ mesurées sur deux dipôles en séries connectés sur le secteur (50 Hz) À l'instant initial (t=0) on représente ces valeurs par deux vecteurs de Fresnel respectant la proportionnalité de la norme (300Vet 173V) et de la phase $(0 \text{ et } \frac{\pi}{3})$.

Sur la figure ci dessus, compléter pour obtenir la tension totale. À partir de votre résultat graphique déterminer la tension totale aux bornes des deux dipôles et choisir la valeur correcte.

$u = 381\cos(100\pi t + 0,40)$	u = 38	$85\cos(100\pi t)$	+0,41)	$u = 376\cos(100$	$0\pi t + 23$
	25)	Aucune	e de ces répons	ses n'est correcte.	

Question 10 & Communiquer Proposer une méthode algébrique permettant de résoudre plus simplement ce problème.

	Appeler le professeur pour expliquer oralement vos propositions
'	

Ne pas cocher \longrightarrow				
	Aucune de			

Complexes			Activité 4				
	codez votre numéro d'étudiant ci-contre, et écrivez	votre nom et pren	om ci-dessous.				
$\overline{\sqcap}_1\overline{\sqcap}_1\overline{\sqcap}_1$	Nom et prénom :						
	Réaliser	Questions 4,5,7	Scores à reporter ici				
4 4 4	Maîtriser les connaissances figurant au programme de mathématiques Approprier	• 1	/				
□ 5 □ 5 □ 5	Employer des sources d'informations Raisonner		/				
	Trouver une stratégie adaptée à un problème						
	Mettre en oeuvre une stratégie : Utiliser de façon approprié des savoir-faire figurant au programme de mathématiques	■ 2,3	/				
片' 片' 片'	 Argumenter Analyser la pertinence d'un résultat 						
	Communiquer						
\square 9 \square 9 \square 9	par écrit par oral	• 6	/				
		Total					
Les questions faisant a	La qualité de la rédaction et la précision des raisonnements influ- pparaître le symbole 🌲 peuvent présenter zéro, une ou plusieurs bonnes ré		une unique bonne réponse.				
COURS							
IV Formules de Moivre et d'Euler							
1 Formule de Moivre							
Théorème 2							
Théorème de Moivre Pour tout entier relatif n et tout nombre complexe z non nul, $ z^n = z ^n$ et $arg(z^n)=n\cdot arg(z)[2\pi]$							
On peut aussi retenir que							
Propriété 4							
$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$							
2 Formule d'Euler							
Théorème 3							
Théorème d'Euler							
Pour tout nombre réel θ on a $\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}$ et $\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}$							

Question 2 et les proprié	Raisonner Démontrer simplement la formule de Moivre en utilisant la notation exponentielle d'un nombre complexe tés des nombres complexes
	Appeler le professeur pour lui montrer votre démonstration
	Ne pas cocher \longrightarrow
Question 3 nombre com	Raisonner Démontrer simplement la formule d'Euler en utilisant la notation exponentielle et trigonométrique d'un plexe et de son conjugué
	Appeler le professeur pour lui montrer votre démonstration
	Ne pas cocher \longrightarrow
Question 4	Réaliser En utilisant la formule de Moivre trouver la valeur correcte de $\cos(2\theta)$ et $\sin(2\theta)$
	COURS
3 Linéarisa	ion de polynômes trigonométriques
Définition	on 13
	Linéariser un polynôme trigonométrique revient à trouver des expressions trigonométriques du premier degré
Proprié	té 5
Τορπ	Pour tout nombre réel θ on a $\cos^2 \theta + \sin^2 \theta = 1$

trigonométrique 2	$2\cos^2\theta + 3\sin^2\theta$			r correcte de la linéarisatio	
		·····		·····	
$2\cos^2\theta$	$+3\sin^2\theta = \frac{6}{2}$	$2\cos^2\theta + 3\sin^2\theta$	$\theta = \frac{5}{2}(1 - \cos 2\theta)$		$\frac{1}{2}(5-\cos 2\theta)$
		$2\cos^2\theta$ +	$3\sin^2\theta = \frac{1 - \cos 2\theta}{2}$		
des mathématique remarquables 0, 1	es, car elle réunit en s $1,\ e,\ i$ et π . En 1988	seulement 7 caractères l'a	nddition, la multiplication athematical Intelligencer	r, est qualifiée de formule la p n, l'exponentiation, l'égalité e l'ont désignée comme la pl rait de Wikipédia.	et les constantes
		our lui montrer votre e			
		Ne pas cocher —	\rightarrow		
Question 7	Réaliser En utilisant l	a formule d'Euler déterm	iner l'expression correcte	e de $\cos^3 heta$	
	$\cos^3\theta = \cos\theta + \cos\theta$	<u> </u>	$\cos \theta - \cos 3\theta$ $\cos^3 \theta = \frac{4}{3}\cos 3\theta$		s 3θ